A practical methodology is developed for the determination of spectral zones in Pebble Bed Reactors (PBR). The methodology involves the use of spectral indices based on few-group diffusion theory whole core calculations. In this work a spectral zone is defined as made up of a number of nodes whose characteristics are collectively similar and that are assigned the same few-group diffusion constants. Therefore, spectral indices that reflect the physical behaviors of interest can be used to characterize said behaviors within each zone and thus to identify and distinguish the spectral zones. Several plausible spectral indices have been investigated in this work. Special emphasis and focus was placed on the trend or behavior of the spectral index at various positions along the radial and axial dimensions in the core. The ratio of group-wise surface currents to total surface fluxes, has been used to successfully identify spectral zone boundaries. A plot of the absolute value of this ratio versus position in the reactor exhibits a series of minima and maxima points. These extrema correlate with regions of significant spectral changes, and therefore are identified as plausible spectral zone boundaries.

You do not currently have access to this content.