In order to present credible results in nuclear design and safety analysis, computer codes must adhere to stringent qualification procedures imposed by nuclear licensing authorities. Such procedures form the basis for a quality assured verification and validation process. This is particularly true for advanced nuclear systems of Generation IV type, where little licensing experience exists as well as little or no plant data is available. Qualification of nuclear design and analysis codes can be achieved in various ways, namely: comparison of results from a code with results from another code i.e. code to code benchmarking; comparison of results from a given code with experimental results, i.e. code to experiment benchmarking; comparison of results from a given code with operational plant data; and finally, comparison of the results of a given code with known analytical solutions. In this paper, a systematic qualification of the coupled neutron transport and thermal hydraulics code DORT-TD/THERMIX is presented. As part of developing this coupled code to the level where it can be used as an independent tool by both designers of pebble-bed High-Temperature Gas-cooled Reactors (HTGRs) and regulators, an effort has been made to verify the coupling scheme as well as the validity of application for this code package. At these initial stages a code to code comparison has been adopted as the qualification method of choice. This is done for both steady-state and transient benchmark problems, ranging from simplified to detailed models. As shown in the results section, all benchmarks have been successfully recalculated and generally show good to very good agreement with the “reference” solutions.

This content is only available via PDF.
You do not currently have access to this content.