The question arose whether the correlation for the pressure drop prescribed for cylindrical pebble bed reactors by the Nuclear Safety Commission (KTA) of Germany could still be applied to the proposed annular configuration of the Pebble Bed Modular Reactor (PBMR) currently being developed in South Africa. An approach is described which uses the extended Brinkman equation for fully developed flow together with the original KTA correlation, to account for the resistance of the pebbles, and an effective viscosity, to account for the effect of the walls. A cylindrical packed bed with the same hydraulic diameter as the annular core was first of all considered. The pressure drops for various Reynolds numbers were calculated using a correlation which accounts for the effect of the wall. The formulation of the correlation for an infinite bed was then used along with the Brinkman equation to determine the appropriate values of the effective viscosity to give the same pressure drops. It was then assumed that the effective viscosities obtained in this way could be applied to the annular configuration of the PBMR. The pressure drop through the annular core was then calculated for various Reynolds numbers employing the effective viscosities in the extended Brinkman equation. It was found that the friction coefficients that could be derived from these pressure drops were in good agreement with the friction coefficients obtained from physical experiments performed on a scale model of the PBMR annular core. It was therefore concluded that the strategy followed could be used with the necessary care to predict the pressure drop through the annular core of the PBMR.
Skip Nav Destination
Fourth International Topical Meeting on High Temperature Reactor Technology
September 28–October 1, 2008
Washington, DC, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-4854-8
PROCEEDINGS PAPER
Using an Effective Viscosity to Account for the Effect of the Walls on the Pressure Drop Through an Annular Packed Bed
C. G. du Toit,
C. G. du Toit
North-West University, Potchefstroom, North-West, South Africa
Search for other works by this author on:
A. J. K. van der Walt,
A. J. K. van der Walt
M-Tech Industrial, Potchefstroom, North-West, South Africa
Search for other works by this author on:
J. van der Merwe
J. van der Merwe
M-Tech Industrial, Potchefstroom, North-West, South Africa
Search for other works by this author on:
C. G. du Toit
North-West University, Potchefstroom, North-West, South Africa
A. J. K. van der Walt
M-Tech Industrial, Potchefstroom, North-West, South Africa
J. van der Merwe
M-Tech Industrial, Potchefstroom, North-West, South Africa
Paper No:
HTR2008-58048, pp. 411-417; 7 pages
Published Online:
July 1, 2009
Citation
du Toit, CG, van der Walt, AJK, & van der Merwe, J. "Using an Effective Viscosity to Account for the Effect of the Walls on the Pressure Drop Through an Annular Packed Bed." Proceedings of the Fourth International Topical Meeting on High Temperature Reactor Technology. Fourth International Topical Meeting on High Temperature Reactor Technology, Volume 1. Washington, DC, USA. September 28–October 1, 2008. pp. 411-417. ASME. https://doi.org/10.1115/HTR2008-58048
Download citation file:
12
Views
Related Proceedings Papers
Related Articles
Extending Classical Friction Loss Modeling to Predict the Viscous Performance of Pumping Devices
J. Fluids Eng (October,2019)
Turbulent Drag Reduction by Biopolymers in Large Scale Pipes
J. Fluids Eng (April,2015)
Pressure Measurements in a Wire-Wrapped 61-Pin Hexagonal Fuel Bundle
J. Fluids Eng (March,2018)
Related Chapters
Hydraulic Resistance
Heat Transfer & Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
The Design and Implement of Remote Inclinometer for Power Towers Based on MXA2500G/GSM
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Incremental Model Adjustment
Nonlinear Regression Modeling for Engineering Applications: Modeling, Model Validation, and Enabling Design of Experiments