Abstract

Real-time thermal monitoring and regulation are critical to the mitigation of thermal runaways and device failures in two-phase cooling systems. Compared to conventional approaches that rely on the Joule effect, thermal gradient or transverse thermoelectric effect, acoustic emission (AE)-based remote sensing is more promising for robust and non-intrusive thermal monitoring. Nevertheless, due to the high stochasticity and noise of acoustic signals, existing implementations of AE in thermal systems have been limited to qualitative state monitoring. In this paper, we present a technology for real-time heat flux quantification during two-phase cooling by coupling acoustic sensing using hydrophones and condenser microphones and regression-based machine learning frameworks. These frameworks integrate a fast Fourier transform feature extraction algorithm with regressors, i.e., Gaussian process regressor and multilayer perceptron regressor for heat flux predictions. The acoustic signals and heat fluxes are collected from pool boiling tests under transient heat loads. It is shown that both hydrophone and condenser microphone signals are successful in predicting heat flux. Multiple models are trained and compared some using only one form of acoustic data while others combine both acoustic types (i.e., hydrophone and microphone) in fusion ML models (i.e., early, joint, late). The models using only hydrophone data are shown to perform better than the models using only microphone data. Also, some forms of fusion are shown to have better performance than either of the single input data type models. This AE-ML technology is demonstrated for accurate heatflux quantification. As such, this work will not only lead to a light, low-cost, and non-contact thermal measurement technology but also a new perspective for the physical explanation of bubble dynamics during boiling.

This content is only available via PDF.
You do not currently have access to this content.