In this research, heat transfer and pressure penalty from a circular tube with delta winglets insert are numerically investigated through Computational Fluid Dynamics (CFD) methodology. Numerical analysis with and without vortex generators (VGs) insert in a tube are done for a turbulent air flow, Reynolds number ranging from 6000 to 33000, under constant heat flux condition on the circular tube model surface. In our current research, we employed the shear stress transport (SST) k-omega model. The Nusselt number and friction factor results show the influence of the VGs insert on thermal performance. Effects of different winglet attack angles and blockage ratios on thermal performance enhancement were examined. Thermal performance is enhanced 5.1–30.7% using winglets in a tube. It is observed that small blockage ratio, B = 0.1 performed better than its counterpart of 0.2 and 0.3 for all the Reynolds number and for the same attack angle. The attack angle β = 15° and 30° showed better thermal performance enhancement at lower Re while at higher Re, β = 15° showed better performance. The maximum enhancement obtained for β = 30° and B = 0.1. Winglet vortex generator could create swirling flow when attack angle is 0 or 15°. When attack angle is increased, both swirling flow and longitudinal vortices appeared. At attack angle of 45°, large longitudinal vortices was found.

This content is only available via PDF.
You do not currently have access to this content.