Abstract

The demand for freshwater has been increased globally. Membrane distillation (MD) technique can be an attractive option for desalination applications. MD is defined as a thermal-driven separation process that implements a hydrophobic membrane for allowing only water vapor transport through the membrane. VMD system is investigated in this study to examine its sensitivity toward the channel design. PTFE membrane is employed and treated as a functional surface where its main properties, such as porosity, tortuosity, pore diameter, and membrane thickness are defined. Different flow rates and inlet temperatures of the feed solution are involved to intensely study the effect of the channel length on VMD performance. The local concentration and temperature polarization coefficient and mass flux along the membrane surface are presented and discussed. With the increasing length of the module, concentration and temperature polarization levels are increased, and the vapor flux is decreased. It is shown that the permeate flux decreases linearly with the channel length. The slope of the permeate flux with length can be used to estimate the flux performance of modules with varying length.

This content is only available via PDF.
You do not currently have access to this content.