Abstract
One way to enhance thermal performance of the Li-ion batteries is embedding microgrooves inside the porous electrodes and flowing the electrolyte through these microgrooves. A 2D thermal Lattice Boltzmann Method (LBM) was employed to predict electrolyte flow, heat transfer, and internal heat generation inside the positive porous electrode. Size and number of the microgrooves were investigated, and it was found that embedding microgrooves inside the porous electrode improved the thermal performance of the Li-ion battery by keeping the electrode in lower temperatures and improving its temperature uniformity. Furthermore, increasing the number of microgrooves (in a constant ratio between total size of the microgrooves to size of the porous electrode) kept the porous electrode in lower temperatures and enhanced temperature uniformity.