Stable homogeneous colloidal suspensions of nanoparticles in a liquid solvents are termed as nanofluids. In this review the results for the forced convection heat transfer of nanofluids are gleaned from the literature reports. This study attempts to evaluate the experimental data in the literature for the efficacy of employing nanofluids as heat transfer fluids (HTF) and for Thermal Energy Storage (TES). The efficacy of nanofluids for improving the performance of compact heat exchangers were also explored. In addition to thermal conductivity and specific heat capacity the rheological behavior of nanofluids also play a significant role for various applications. The material properties of nanofluids are highly sensitive to small variations in synthesis protocols. Hence the scope of this review encompassed various sub-topics including: synthesis protocols for nanofluids, materials characterization, thermo-physical properties (thermal conductivity, viscosity, specific heat capacity), pressure drop and heat transfer coefficients under forced convection conditions. The measured values of heat transfer coefficient of the nanofluids varies with testing configuration i.e. flow regime, boundary condition and geometry. Furthermore, a review of the reported results on the effects of particle concentration, size, temperature is presented in this study. A brief discussion on the pros and cons of various models in the literature is also performed — especially pertaining to the reports on the anomalous enhancement in heat transfer coefficient of nanofluids. Furthermore, the experimental data in the literature indicate that the enhancement observed in heat transfer coefficient is incongruous compared to the level of thermal conductivity enhancement obtained in these studies. Plausible explanations for this incongruous behavior is explored in this review. A brief discussion on the applicability of conventional single phase convection correlations based on Newtonian rheological models for predicting the heat transfer characteristics of the nanofluids is also explored in this review (especially considering that nanofluids often display non-Newtonian rheology). Validity of various correlations reported in the literature that were developed from experiments, is also explored in this review. These comparisons were performed as a function of various parameters, such as, for the same mass flow rate, Reynolds number, mass averaged velocity and pumping power.
Skip Nav Destination
ASME 2017 Heat Transfer Summer Conference
July 9–12, 2017
Bellevue, Washington, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-5789-2
PROCEEDINGS PAPER
Forced Convection Heat Transfer of Nanofluids: A Review Available to Purchase
Aditya Kuchibhotla,
Aditya Kuchibhotla
Texas A&M University, College Station, TX
Search for other works by this author on:
Debjyoti Banerjee
Debjyoti Banerjee
Texas A&M University, College Station, TX
Search for other works by this author on:
Aditya Kuchibhotla
Texas A&M University, College Station, TX
Debjyoti Banerjee
Texas A&M University, College Station, TX
Paper No:
HT2017-5050, V002T14A013; 7 pages
Published Online:
October 18, 2017
Citation
Kuchibhotla, A, & Banerjee, D. "Forced Convection Heat Transfer of Nanofluids: A Review." Proceedings of the ASME 2017 Heat Transfer Summer Conference. Volume 2: Heat Transfer Equipment; Heat Transfer in Multiphase Systems; Heat Transfer Under Extreme Conditions; Nanoscale Transport Phenomena; Theory and Fundamental Research in Heat Transfer; Thermophysical Properties; Transport Phenomena in Materials Processing and Manufacturing. Bellevue, Washington, USA. July 9–12, 2017. V002T14A013. ASME. https://doi.org/10.1115/HT2017-5050
Download citation file:
63
Views
Related Proceedings Papers
Related Articles
Heat Transfer Augmentation of Aqueous Suspensions of Nanodiamonds in Turbulent Pipe Flow
J. Heat Transfer (April,2009)
Thermal
and Hydraulic Performance of Counterflow Microchannel Heat Exchangers With and Without
Nanofluids
J. Heat Transfer (August,2011)
On the Cooling of Electronics With Nanofluids
J. Heat Transfer (May,2011)
Related Chapters
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine
The Special Characteristics of Closed-Cycle Gas Turbines
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Heat Transfer Enhancement by Using Nanofluids in Laminar Forced Convection Flows Considering Variable Properties
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)