An experimental investigation on heat transfer peculiarity of kerosene flowing in vertical upward high flux tubes at supercritical pressure is presented. Three inner-sintered steel powder coating tubes (high flux tubes) and one smooth tube are tested under the different super-critical pressure and different mass flux of kerosene in the experiment. Results are found that all three high flux tubes perform much better than smooth tube at the same parameters of the tube and same working conditions. It can be obviously deduced that the outer wall temperature is reduced by the disturbance in the flow field of the sintered metal coating at the inner tube-side, while the reduced mass flux can increase the wall temperature on the contrary. Heat transfer coefficient is found 2.5 times as the smooth tube, yet both too large and too small particle diameters of metal powder sintered on the tube surface can deteriorate heat transfer. Density and viscosity, thermal conductivity of kerosene at different temperatures and pressures under supercritical pressure can be evaluated by using the extended corresponding state principle, which shows good consistency with the experimental results.

This content is only available via PDF.
You do not currently have access to this content.