Better understanding of phase change phenomena can be obtained through local measurements of the heat transfer process, which can’t be attained by traditional thermocouple point measurements. Infrared (IR) technology, which has been used by many researchers in the past, cannot be used under certain circumstances due to spectral transparency issues present in some materials. In the current study, Quantum Dots (QDs) are proposed as a novel tool for heat transfer measurements. QDs are nano-sized semiconductor materials which fluoresce upon excitation by blue or UV light. The light intensity emitted by QDs drops with temperature, which can be utilized to obtain the surface temperature distribution at a camera pixel resolution. If QDs are distributed on a surface of interest and optical access to that surface is available, the heat transfer processes can be examined using inexpensive equipment such as CCD/CMOS cameras and LED excitation sources. In this paper, a description of a QD based technique is given, where it is applied to visualize the heat transfer associated with ethanol droplet evaporation.

This content is only available via PDF.
You do not currently have access to this content.