Carbon monoxide (CO) boilers play an important role in the petroleum refining industry, completing the combustion of CO in the flue gas generated by the regeneration of fluidized cracking catalyst. The heat released by the CO combustion is used to generate steam for use in the refinery. The flue gas flow path can have a significant effect on the thermal efficiency and operation safety of the boiler. In this paper, a CO boiler which had been experiencing low thermal efficiency and high operation risks was studied. A three-dimensional (3D) computational fluid dynamics (CFD) model was developed with detailed description on the combustion process, flow characteristics and heat transfer. The results obtained from the model have good agreement with the plant measurement data. The heat transfer between the tubes and the combustion flue gas was optimized by adding a checker wall.
- Heat Transfer Division
Numerical Simulation and Optimization of a Carbon Monoxide Boiler
Tang, G, Wu, B, & Zhou, CQ. "Numerical Simulation and Optimization of a Carbon Monoxide Boiler." Proceedings of the ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1: Heat Transfer in Energy Systems; Thermophysical Properties; Theory and Fundamentals in Heat Transfer; Nanoscale Thermal Transport; Heat Transfer in Equipment; Heat Transfer in Fire and Combustion; Transport Processes in Fuel Cells and Heat Pipes; Boiling and Condensation in Macro, Micro and Nanosystems. Washington, DC, USA. July 10–14, 2016. V001T06A003. ASME. https://doi.org/10.1115/HT2016-7281
Download citation file: