The oscillatory flows are often in order to augment heat transfer rates in various processes. It is also well known fact that nanofluids provide significant enhancement in heat transfer at certain conditions. In this research, heat transfer in an oscillatory pipe flow of both water and water-alumina nanofluid were studied experimentally under low frequency regime flow conditions. The aim of the conducted research is parametric experimental investigation of the convective heat transfer in the oscillatory pipe flow. Firstly, the nanofluids were prepared and thermophysical properties weare measured. The experimental apparatus consist of a capillary pipe bundle connecting two reservoirs which are placed at the top and bottom side of the capillary pipe bundle. Upper reservoir contains the hot fluid while lower reservoir and capillary pipe bundle filled with cold fluid. The oscillatory flow in the pipe bundle is driven by the periodic vibrations of a surface mounted on the bottom end of the cold reservoir. The effects of the maximum displacement amplitude of the vibrations and volumetric concentration of nanoparticles on heat transfer were evaluated based on the measured temperature and acceleration data. It is found that heat transfer rate increases with increasing vibration displacement in the fluid.
- Heat Transfer Division
Experimental Investigation of Oscillation Controlled Thermal Transport in Water-Based Nanofluids
Guven, Oguz, Aktas, Murat K., and Bayazitoglu, Yildiz. "Experimental Investigation of Oscillation Controlled Thermal Transport in Water-Based Nanofluids." Proceedings of the ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1: Heat Transfer in Energy Systems; Thermophysical Properties; Theory and Fundamentals in Heat Transfer; Nanoscale Thermal Transport; Heat Transfer in Equipment; Heat Transfer in Fire and Combustion; Transport Processes in Fuel Cells and Heat Pipes; Boiling and Condensation in Macro, Micro and Nanosystems. Washington, DC, USA. July 10–14, 2016. V001T04A008. ASME. https://doi.org/10.1115/HT2016-7343
Download citation file:
- Ris (Zotero)
- Reference Manager
- EasyBib
- Bookends
- Mendeley
- Papers
- EndNote
- RefWorks
- BibTex
- ProCite
- Medlars
Close