Near-field thermal radiation and van der Waal force between flat plates and curved surfaces have been probed in the past; however the peculiarities of radiative heat transfer and van der Waals stress due to fluctuations of electromagnetic fields for micro/nano-sized spherical objects have not been studied in great details. We demonstrate how fluctuational electrodynamics can be used to determine emissivity and van der Waals contribution to surface energy for various spherical shapes in a homogeneous and isotropic medium. The dyadic Green’s function formalism of radiative energy and fluctuation-induced van der Waals stress for different spherical configurations has been developed. We present the calculations for a single sphere, a bubble, a spherical shell and a coated sphere. We observe that emission spectrum ofmicro/nanoscale spheres displays several sharp peaks as the size of object reduces. Our calculations indicate that surface energy becomes size dependent (r-3) due to van der Waals phenomena for small radii.

This content is only available via PDF.
You do not currently have access to this content.