Heat transfer coefficients were experimentally determined for a free rotating disk in still air and water. These were obtained with an electrically heated disk placed in a cylindrical pool. The accuracy of the employed experimental apparatus was assessed by heat transfer measurements in air. For this fluid, an excellent agreement with reliable literature data was found. Essentially new experimental data were obtained for water as fluid. Based upon the experimental data, the validity of theoretical correlations and the effect of the Prandtl number on the convective heat transfer from a rotating disk were discussed. It was found that in laminar water flow, the value of the correlation exponent for the Prandtl number is practically identical to 1/2 as theoretically predicted in 1948 by Dorfman. In turbulent flow, its value is better given by 1/3 as in case of the classical turbulent boundary layer theory.
- Heat Transfer Division
Effect of Prandtl Number on the Heat Transfer From a Rotating Disk: An Experimental Study
Helcig, C, & aus der Wiesche, S. "Effect of Prandtl Number on the Heat Transfer From a Rotating Disk: An Experimental Study." Proceedings of the ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1: Heat Transfer in Energy Systems; Thermophysical Properties; Theory and Fundamentals in Heat Transfer; Nanoscale Thermal Transport; Heat Transfer in Equipment; Heat Transfer in Fire and Combustion; Transport Processes in Fuel Cells and Heat Pipes; Boiling and Condensation in Macro, Micro and Nanosystems. Washington, DC, USA. July 10–14, 2016. V001T01A011. ASME. https://doi.org/10.1115/HT2016-7062
Download citation file: