Film cooling has been successfully used in cooling gas turbine components that are exposed to very high temperature environments. One main disadvantage of using film cooling is the aerodynamic losses associated. To address to the needs of obtaining uniform cooling in the downstream regions, backward injection of coolant has proved to be effective. However, there is a need to understand the aerodynamic behaviors of jet and mainstream flows in order to design effective configurations with this scheme of injecting coolant. In this work, the underlying aerodynamic principles of backward injection are studied numerically. All simulations are conducted with Fluent, a commercial CFD software. Results show that the classical counter rotating vortex found in simple cylindrical holes are not seen in the case of backward injections. Backward injection results in reduced coolant requirements and elimination of complex hole designs to avoid jet lift-off.

This content is only available via PDF.
You do not currently have access to this content.