Heat exchanger experiences frost on its surface when it operates below 0°C under heating condition of the heat pump. Since frost blocks air flow through the fin tube heat exchanger, it increases air-side pressure drop and deteriorates heat transfer rate of the heat exchanger. Prediction of the frost profiles on the heat exchanger is needed to minimize the unfavorable effect on the heat exchanger by frost. The present study predicts non-uniform frost distribution on the surface of fin-tube heat exchanger and shows its accuracy by comparing with measured profiles.

Fin and tube heat exchanger for heat pump was considered for the frost prediction under practical refrigerant and air conditions. Non-uniform frost pattern was predicted by using segment by segment method of the heat exchanger. Heat transfer rate and exit temperature of air and refrigerant for each segment were calculated by applying ε-NTU method. Air volume flow rate in the front of the heat exchanger was decreased as frost goes on. It was utilized for the prediction of the frost formation. Numerically predicted results were compared with measured local data. They agreed within ±10.4% under the ISO 5151 condition.

This content is only available via PDF.
You do not currently have access to this content.