Simulations of lithium ion batteries on a cell level are usually performed with volume averaging methods that employ effective transport properties. Bruggeman’s model, which is widely used to determine these effective properties, is solely based on the volume fraction of these porous electrodes. However, other factors like the topology and microstructure of electrodes also play a crucial role in determining effective properties. In this paper, a general derivation of the effective thermal conductivity of multiphase materials, which can be correlated with these factors, is derived using the volume averaging technique. For demonstration, three-dimensional microstructures of various porous materials are reconstructed from scanned images. These images are used to generate fully-resolved finite volume meshes representing the various constituents. The resulting mesh is then employed for numerical analysis of thermal transport, results from which are used for correlating the effective thermal conductivity with various parameters describing the microstructure. It is shown that commonly used power law exponents in the Bruggeman model for effective thermal conductivity must be recalibrated to fit the effective thermal conductivity computed from these detailed simulations.

This content is only available via PDF.
You do not currently have access to this content.