Laminar natural convection in cubic and rhomb–shaped enclosures (rhomb angles 59°, 44° and 28.2°) with two opposite vertical walls kept at different temperatures was investigated experimentally and numerically. The enclosures were filled with glycerol and the Rayleigh (Ra) and Prandtl (Pr) numbers ranged from 2,000<Ra<369,000 and 2,680<Pr<7,000. The visualization of the velocity and temperature fields was obtained by using Plexiglass and liquid crystal particles as tracers. The finite volume method based on the finite difference approach was applied for numerical analysis. The velocity and temperature fields and average Nusselt numbers were found as a function of the Reyleigh and Prandtl numbers. Comparison of the average Nusselt numbers for cubic and rhomb-shaped enclosures indicates decrease of heat transfer for the cases when the lower and upper vertical walls of the rhomb-shaped enclosures are at lower and higher temperatures, respectively. This is due to the tendency of fluid stratification in the lower and upper corners.

This content is only available via PDF.
You do not currently have access to this content.