An experimental investigation of steady, laminar, fluid flow and heat transfer in a vertical closed-loop thermosyphon operating with slurries of a microencapsulated phase-change material (MCPCM) suspended in distilled water is presented. The MCPCM particles consisted of a solid-liquid phase-change material (PCM) encapsulated in a thin polymer resin shell. Their effective diameter was in the range 0.5 to 12.5 micrometers, and had a mean value of 2.5 micrometers. The melting and freezing characteristics and the latent heat of fusion of the PCM were determined using a differential scanning calorimeter. The effective density of the MCPCM was measured, and the effective thermal conductivity of the slurries was determined using a published correlation. In the range of parameters considered, it was determined that the slurries exhibit non-Newtonian behavior. The closed-loop thermosyphon consisted of two vertical straight pipes, joined together by two vertical semi-circular 180-degree bends made of the same pipe. An essentially constant heat flux was imposed on a portion of one of the vertical pipes. The wall temperature of a portion of the other vertical pipe was maintained at a constant value. The outer surfaces of the entire thermosyphon were very well insulated. Calibrated thermocouples were used to measure the outer-wall-surface temperature at numerous points over the heated portion and the bulk temperature of the slurry at four different locations. A special procedure was formulated, benchmarked, and used to deduce the mass flow rate of the slurries in the thermosyphon. The investigation was conducted with slurries of MCPCM mass concentration 0% (pure distilled water), 7.471%, 9.997%, 12.49%, 14.95%, and 17.5%. The results are presented and discussed.
- Heat Transfer Division
Experimental Study of a Closed-Loop Thermosyphon Operating With Slurries of a Microencapsulated Phase-Change Material
Lamoureux, A, & Baliga, BR. "Experimental Study of a Closed-Loop Thermosyphon Operating With Slurries of a Microencapsulated Phase-Change Material." Proceedings of the ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. Volume 3: Gas Turbine Heat Transfer; Transport Phenomena in Materials Processing and Manufacturing; Heat Transfer in Electronic Equipment; Symposium in Honor of Professor Richard Goldstein; Symposium in Honor of Prof. Spalding; Symposium in Honor of Prof. Arthur E. Bergles. Minneapolis, Minnesota, USA. July 14–19, 2013. V003T20A007. ASME. https://doi.org/10.1115/HT2013-17547
Download citation file: