Fan-driven throughflow is frequently used for convective cooling of electronics. Channels with walls behaving like fins are common. In the present study, the flow inside the channels is agitated by means of translationally oscillating plates called agitators. Effectiveness of agitation by oscillating blades is found to be dependent on the channel width, a parameter studied herein. Heat sinks having narrower channels have a greater number of channels in total for the fixed size of heat sink and therefore greater heat transfer area than heat sinks with wider channels. Thus, with the same channel height, as the aspect ratio increases, channel width decreases, and it is found that opportunities for agitation are reduced and the generated turbulence is more strongly damped, thus reducing heat transfer coefficients. A study was carried out to find direction toward an optimal number of channels for a given heat sink using the agitation strategy. As part of the study, fluid damping and power consumption to drive the agitator assembly were addressed. The study was done numerically using ANSYS FLUENT on a representative single channel of the heat sink and the results were extended to the full size, multiple-channel heat sink system. Recommendations for moving toward an optimum geometry, based on thermal performance and agitator power are made.

This content is only available via PDF.
You do not currently have access to this content.