A physical flow model of a gas turbine (GT) simple-cycle Selective-Catalytic-Reduction (SCR) system was constructed to a 1/16 geometric scale to validate computational fluid dynamics (CFD) predictions and examine the impact of tempering air injection on system performance. Repeatable velocity contours and tempering air dispersion profiles were developed for baseline (no tempering air), and 12- and 6-lance tempering air injector configurations. The conclusions from the study are: (1) relative to the no lance baseline case, the 12-lance configuration tends to force more of the inlet flow towards the top of the duct, whereas the 6-lance configuration does not affect the upstream profile significantly, (2) adding tempering air does not have a significant impact on the diffuser inlet velocity distribution and has a minor effect on the velocity and dispersion profiles at the NOX-catalyst inlet, (3) at the NOX-catalyst inlet, the 6-lance configuration with tempering air exhibits a slightly skewed flow toward the lower right corner of the duct with a coefficient of variation (COV) of 19.4%, which is slightly better than that for the 12-lance configuration, (4) at the NOX-catalyst inlet, the 12-lance configuration disperses tempering air best because its COV is 20.8% relative to a 27.3% COV for the 6-lance configuration, and (5) a comparison between the local mixing-cup temperature contours for both 12- and 6-lance configurations, based on tracer injection into the tempering air flow, confirms that the CFD model does a good job of qualitatively predicting the heat and mass transport processes in the GT simple-cycle SCR system.
- Heat Transfer Division
Isothermal Physical Flow Modeling of a Gas Turbine Simple-Cycle Selective-Catalytic-Reduction (SCR) System
Swanson, L, Zhang, H, & Byrd, D. "Isothermal Physical Flow Modeling of a Gas Turbine Simple-Cycle Selective-Catalytic-Reduction (SCR) System." Proceedings of the ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. Volume 3: Gas Turbine Heat Transfer; Transport Phenomena in Materials Processing and Manufacturing; Heat Transfer in Electronic Equipment; Symposium in Honor of Professor Richard Goldstein; Symposium in Honor of Prof. Spalding; Symposium in Honor of Prof. Arthur E. Bergles. Minneapolis, Minnesota, USA. July 14–19, 2013. V003T08A009. ASME. https://doi.org/10.1115/HT2013-17218
Download citation file: