This paper reports experimental and computational studies of flow and heat transfer through a square duct with a sharp 180 degree turn. The main purpose of this research is to study flow and heat transfer predictions of the Analytical Wall-Function (AWF). To compare the predicting performance of the AWF, the standard Log-Law Wall-Function (LWF) and Low-Reynolds-number (LRN) k-ε model were applied. Their results were also compared with the experimental results for validation. In addition, three extended forms of the AWF were tested. Computational results showed better agreement with the experimental data, especially after the turn of the channel. It was also found that the wall-function (WF) models predicted more reasonable results as Reynolds number increased. The both wall-function models predicted similar results except for separation/reattachment regions where the LWF predicted lower Nusselt number than the other models.
- Heat Transfer Division
Heat Transfer Analysis of Two Pass Cooling Channel of Gas Turbine Blade With Analytical Wall Function Turbulence Approach
Arakawa, H, Shen, S, & Amano, RS. "Heat Transfer Analysis of Two Pass Cooling Channel of Gas Turbine Blade With Analytical Wall Function Turbulence Approach." Proceedings of the ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. Volume 3: Gas Turbine Heat Transfer; Transport Phenomena in Materials Processing and Manufacturing; Heat Transfer in Electronic Equipment; Symposium in Honor of Professor Richard Goldstein; Symposium in Honor of Prof. Spalding; Symposium in Honor of Prof. Arthur E. Bergles. Minneapolis, Minnesota, USA. July 14–19, 2013. V003T08A008. ASME. https://doi.org/10.1115/HT2013-17204
Download citation file: