We present a computational study on the dynamics and freezing of micron-size water droplets impinging onto super-hydrophobic surfaces, the temperatures of which are below the freezing point of water. Icing poses a great challenge for many industries. It is well known that increasing hydrophobicity can make a surface ice-phobic. Experiments show that millimeter size water drops landing on super-hydrophobic surfaces bounce off even when the surface temperature is well below the freezing point. However, it has been reported that the ice-phobicity feature of such surfaces can vanish due to frost formation on the surface, or when small micro-droplets begin to freeze and stick to the surface. Using an in-house, 3D, GPU-accelerated computational tool, we investigated the impact dynamics and freezing of a 40 μm water droplet impinging at 1.4 m/s onto two different super-hydrophobic surfaces chosen from [1]. The advancing and receding contact angles are 165° and 133°, respectively, on one surface, and 157° and 118°, respectively, on the other. The surface and initial droplet temperatures were varied from −25 to 25°C and from 0 to 25°C, respectively. On each surface a “transition” surface temperature was found, at which the drop behavior transitions from bouncing off the surface to sticking. The time between drop landing and bounce-off as well as the contact diameter between the stuck drop and the surface both increase with decreasing the surface temperature. The simulations also show that at some surface temperatures a thin ice layer forms during droplet spreading and then remelts as the droplet recoils.

This content is only available via PDF.
You do not currently have access to this content.