Biporous wicks are an effective means for facilitating evaporation in heat pipes used for electronics cooling. They facilitate boiling within the wick by having two distinct size distributions of pores; the smaller pores provide high capillary pressure to pump liquid to the surface while the larger pores maintain high vapor permeability. The wicks investigated in this study were sintered copper biporous material. The authors previously presented a validated statistical model, based on work by Kovalev, which could predict the performance of biporous wicks tested at UCLA with reasonable accuracy [1]. Using this model, the author was able to gain new insight into the effect that the numerical estimate of liquid saturation of the wick has on dry out. The pore size distribution allows the determination of the capillary pressure available inside the wick and the Kovalev model provides the required pressure drop to supply liquid water to the heater surface. This led to a method of predicting dry out by comparing the capillary pressure in the wick to the required pressure drop from the model to estimate when the wick was dried out.

When the required pressure drop determined by code exceeds the peak effective capillary pressure provided by the wick, the large pores of the wick are considered to be dry. These values are correlated to the input heat flux to determine what at what input power the wick begins to dry out. While the wick will not fail in this mode, the overall heat transfer coefficient will have peaked. In this work, this method of determining dry out will be validated against wicks tested at UCLA by comparing the input powers at which this dry out phenomenon occurs. Accurate predictions of dry out and the role of the pore size distribution are critical in developing methods to delay dry out of biporous wicks. By comparing the relative dry out points of various wick geometries to each other, augmented wick geometries can be suggested for future work. This modeling tool can lay the foundation for future tailoring of biporous evaporator wicks to specific tasks.

This content is only available via PDF.
You do not currently have access to this content.