Manifold microchannels utilize a system of manifolds to divide long microchannels into an array of parallel ones, resulting in reduced flow length and more localized liquid feeding. Reducing flow length is desirable because it enables the simultaneous enhancement of heat transfer rate and reduction of pressure drop. Furthermore, localized feeding reduces potential for localized dryout, increasing the operational heat flux. Because of the failure of the available conventional heat transfer correlations to predict the thermal performance of manifold microchannels operating in two phase mode, a “streamline” model was created. The heat transfer surface area was divided into parallel, non-interacting streamlines, and the quality, void fraction, film thickness, heat transfer coefficient, heat flux, and pressure drop was calculated sequentially along the streamline. The mass flow rate through each streamline was adjusted in order to obtain the specified pressure drop, and the value of this pressure drop was adjusted in order to obtain the desired microchannel mass flux. Finally, the average wall heat transfer coefficient was calculated, and temperature profile in the fin was adjusted to correspond with the analytical 1-D temperature distribution of a thin fin with an average wall heat transfer coefficient and specified base superheat. The average wall heat transfer coefficients predicted by the model was then compared to the available experimental data with sufficiently good agreement with a wide variety of geometries and working fluids at low mass fluxes.

This content is only available via PDF.
You do not currently have access to this content.