Compared with the conventional mathematical and physical models, the lattice Boltzmann (LB) method is an effective method to simulate the heat and mass transfer in porous media. Frost crystallization aggregation is a very complex process involving inconsistency of frost structures, crystal size distributions, the complex transient shapes, and other numerous influential factors. Assuming the frost is a special porous medium consists of ice crystals and humid air, a mesoscopic model is established to predict the behavior of frost formation based on the lattice Boltzmann equation. The moving boundary condition is adopted in the two-dimensional nine-speed (D2Q9) lattices. The influences of the cold flat surfaces temperature on frost formation process are investigated. The variation laws of frost density and frost layer height are obtained and discussed. Simulation results by the LB model are in agreement with the experiment data from the references.

This content is only available via PDF.
You do not currently have access to this content.