Nanofluids, stable colloidal suspensions of nanoparticles in a base fluid, have potential applications in the heat transfer, combustion and propulsion, manufacturing, and medical fields. Experiments were conducted to determine the evaporation rate of room temperature, millimeter-sized pendant droplets of ethanol laden with varying (0–3%) weight percentages of 40–60 nm aluminum nanoparticles (nAl). High-resolution droplet images were collected as a function of time for the determination of D-square law evaporation rates. Results show an asymptotic decrease in droplet evaporation rate with increasing nAl loading. The evaporation rate decreases by approximately 15% at around 1% to 3% nAl loading relative to the evaporation rate of pure ethanol, a reduction greater than can be explained by reduction in the vapor pressure of an ideal nanofluid mixture by Raoult’s law. It is hypothesized that the reduction in evaporation rate could be due to two phenomena: 1) the reduction in the ethanol volume fraction available for evaporation due to an interfacial layer on the immersed nanoparticle surface and 2) the aggregation of nanoparticles within the droplet and at the droplet surface, reducing the liquid diffusion rate to the surface and the liquid volume fraction at the surface available for evaporation.

This content is only available via PDF.
You do not currently have access to this content.