CMK-3 is a typical of carbon rods which are arranged in relatively regular two-dimensional hexagonal array. In our study, the effective thermal conductivity of CMK-3 composite is investigated. For the thermal conductivity of carbon rods, the equilibrium molecular dynamics (EMD) is performed with Tersoff potential. The influences of porosity and temperature are also considered. For the thermal conductivity of air confined in mesoporous can be estimated by the frequently used Kaganer model. Then, the effective thermal conductivity models developed for coupled heat transfer of air and solid are obtained by the unit cell method. ETCs along the X and Y directions are extremely poor, due to the overwhelming effect of air thermal resistance. However, in the Z direction, the ETC improves almost linearly as the porosity decreases, and the value is much higher than those of X and Y directions. This study is in attempts to explore the possibility of CMK-3 being a proper substrate for thermal usage.

This content is only available via PDF.
You do not currently have access to this content.