Thermochemical storage of high-temperature (450°C – 1000°C) thermal energy can be applied to concentrated solar power systems for round-the-clock electricity dispatchability. Reversible, non-catalytic gas-solid reactions are used to convert thermal into chemical energy during endothermic charging, and vice versa during exothermic discharging. To assist the experimental investigation of such chemical reactors, a numerical model of the heat and mass transfer in a tubular packed bed reactor has been developed. The fluid serves as both heat transfer medium and gas reactant supplier and is modeled as a homogeneous phase using unsteady one-dimensional mass and energy balances. Solid reactants are modeled as spherical porous granules. The unsteady radial energy and mass balances are solved in the granules. This allows for the accurate treatment of larger granules with a diameter in the range of mm to cm in which radial gradients may occur. The temperature profile within a granule is calculated from an energy balance, whereas mass balances track the local concentration of the gases within the pores, affected by diffusion and an eventual mass source/sink due to the gas-solid reaction. The fluid and granule phases are coupled through local mass and energy exchange terms. The numerical implementation of the model is tested through a thorough code-verification study and a general assessment on mass and energy conservation within the coupled fluid and granule phases.
Skip Nav Destination
ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
July 14–19, 2013
Minneapolis, Minnesota, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-5547-8
PROCEEDINGS PAPER
One-Dimensional Heat and Mass Transfer and Discrete Granule Model of a Tubular Packed-Bed Reactor for Thermochemical Storage of Solar Energy Available to Purchase
Stefan Ströhle,
Stefan Ströhle
Paul Scherrer Institute, Villigen PSI, Switzerland
Search for other works by this author on:
Zoran Jovanovic,
Zoran Jovanovic
ETH Zurich, Zurich, Switzerland
Search for other works by this author on:
Andreas Haselbacher,
Andreas Haselbacher
ETH Zurich, Zurich, Switzerland
Search for other works by this author on:
Aldo Steinfeld
Aldo Steinfeld
ETH Zurich, Zurich, Switzerland
Paul Scherrer Institute, Villigen PSI, Switzerland
Search for other works by this author on:
Stefan Ströhle
Paul Scherrer Institute, Villigen PSI, Switzerland
Zoran Jovanovic
ETH Zurich, Zurich, Switzerland
Andreas Haselbacher
ETH Zurich, Zurich, Switzerland
Aldo Steinfeld
ETH Zurich, Zurich, Switzerland
Paul Scherrer Institute, Villigen PSI, Switzerland
Paper No:
HT2013-17301, V001T01A031; 10 pages
Published Online:
December 21, 2013
Citation
Ströhle, S, Jovanovic, Z, Haselbacher, A, & Steinfeld, A. "One-Dimensional Heat and Mass Transfer and Discrete Granule Model of a Tubular Packed-Bed Reactor for Thermochemical Storage of Solar Energy." Proceedings of the ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. Volume 1: Heat Transfer in Energy Systems; Thermophysical Properties; Theory and Fundamental Research in Heat Transfer. Minneapolis, Minnesota, USA. July 14–19, 2013. V001T01A031. ASME. https://doi.org/10.1115/HT2013-17301
Download citation file:
22
Views
Related Proceedings Papers
Related Articles
Investigation on a Solar Thermal Power Plant With a Packed Bed Heat Storage Unit
J. Sol. Energy Eng (August,2022)
Numerical Modeling of a Novel Thermocline Thermal Storage for Concentrated Solar Power
J. Sol. Energy Eng (October,2019)
Transient Behavior of a Salinity Gradient Solar Pond Under Mediterranean Climate
J. Sol. Energy Eng (October,2023)
Related Chapters
Numerical Study on Dynamic Discharging Performance of Packed Bed Using Spherical Capsules Containing N-Tetradecane
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Numerical Study on Dynamic Charging Performance of Packed Bed Using Spherical Capsules Containing N-Tetradecane
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Energy Options and Terms: An Introduction
Energy Supply and Pipeline Transportation: Challenges & Opportunities