Complete three-dimensional numerical simulations of single bubble dynamics under pool and flow boiling conditions are carried out using the CFD code FLOW3D© based on the volume-of-fluid (VOF) method. The analyses include a numerically robust kinetic phase change model and transient wall heat conduction. The simulation approach is calibrated by comparison with available experimental and theoretical data. It is found that the observed hydrodynamics (i.e. bubble shape, departure, and deformation) are simulated very well. The comparison with high-resolution transient temperature measurements during a heating foil experiment indicates that modeling of the spatio-temporal heat sink distribution during bubble growth requires major attention. The simulation tool is employed for single bubble dynamics during flow boiling, and the agreement is excellent with published experimental data. The numerical results indicate how bulk flow velocity and wall heat transfer influence the bubble and heat transfer characteristics.

This content is only available via PDF.
You do not currently have access to this content.