A number of experimental studies have been published for single-phase liquid cooling for electronic heat sources. These include flow though various sized channels and configurations. Results are expressed using a thermal resistance as a function of liquid volumetric (or mass) flow rate. This paper discusses the regression of experimental data. Two simple thermal resistance models are evaluated, each having a combination of conduction and convection components. The models are applicable to a wide set of data. A preferred model is identified having three parameters: (1) overall resistance at a nominal flow, (2) percentage of resistance due to conduction at the nominal flow, and (3) convective exponent for the liquid flow rate. The preferred model has lower correlation between its parameters and reproduces the trends in experimental data. The model is used to quantify the relative contribution of the convective and conductive sources of thermal resistance. It is also useful in design to evaluate the effectiveness of increasing the liquid flow rate which can be accomplished with increased pressure drop and pumping costs. The best-fit estimates and their approximate 95% confidence intervals are calculated using experimental data. A few experimental results yield discrepant values for the model parameters. In some cases the rate of reduction of the thermal resistance with increasing flow rate appears beyond what can be reasonably expected. Sources of discrepant results are discussed. The results of the paper are helpful in evaluating experimental data and guiding the design of liquid-cooled heat sinks.
Skip Nav Destination
ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels
July 8–12, 2012
Rio Grande, Puerto Rico, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-4478-6
PROCEEDINGS PAPER
Evaluating Liquid-Cooled Heat Sink Resistance Data for Electronic Applications Available to Purchase
Randall D. Manteufel
Randall D. Manteufel
University of Texas at San Antonio, San Antonio, TX
Search for other works by this author on:
Randall D. Manteufel
University of Texas at San Antonio, San Antonio, TX
Paper No:
HT2012-58555, pp. 785-794; 10 pages
Published Online:
July 24, 2013
Citation
Manteufel, RD. "Evaluating Liquid-Cooled Heat Sink Resistance Data for Electronic Applications." Proceedings of the ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 2: Heat Transfer Enhancement for Practical Applications; Fire and Combustion; Multi-Phase Systems; Heat Transfer in Electronic Equipment; Low Temperature Heat Transfer; Computational Heat Transfer. Rio Grande, Puerto Rico, USA. July 8–12, 2012. pp. 785-794. ASME. https://doi.org/10.1115/HT2012-58555
Download citation file:
14
Views
Related Proceedings Papers
Related Articles
Thermal Interfacing Techniques for Electronic Equipment—A Perspective
J. Electron. Packag (June,2003)
A Simplified Conduction Based Modeling Scheme for Design Sensitivity Study of Thermal Solution Utilizing Heat Pipe and Vapor Chamber Technology
J. Electron. Packag (September,2003)
Integrated Microchannel Cooling for Three-Dimensional Electronic Circuit Architectures
J. Heat Transfer (January,2005)
Related Chapters
When Is a Heat Sink Not a Heat Sink?
Hot Air Rises and Heat Sinks: Everything You Know about Cooling Electronics Is Wrong
Thermal Interface Resistance
Thermal Management of Microelectronic Equipment
Thermal Interface Resistance
Thermal Management of Microelectronic Equipment, Second Edition