An alternative to air-cooling of high performance computing equipment is presented. Heat removal via pool boiling in FC-72 was tested. Tests were conducted on a multichip module using 1.8 cm × 1.8 cm test die with multiple thermal test cells with temperature sensing capability. Measurements with the bare silicon die in direct contact with the fluid are reported. Additional testing included the test die directly indium-attached to copper heat spreaders having surface treatments. A screen-printed sintered boiling-enhanced surface (4 cm × 4 cm) was evaluated. Tests were conducted on an array of five die. Parameters tested include heat flux levels, dielectric liquid pool conditions (saturated or subcooled), and effect of neighboring die. Information was gathered on surface temperatures for a range of heat flux values up to 12 W/cm2. The highest heat dissipated from a circuit board with five bare die was 195 W (39 W per die). Addition of the heat spreader allowed heat dissipation of up to 740 W (from a five-die array). High-speed imaging was also acquired to help examine detailed information on the boiling process. Numerical modeling indicated that placing multiple boards in close proximity to each other did not degrade performance until board spacing was reduced to 3 mm.

This content is only available via PDF.
You do not currently have access to this content.