This paper investigates heat transfer enhancement of an air-cooled plate-fin heat sink by introducing actively-driven agitating plates within its channels. The investigation was computationally conducted with a single actuated plate in a single channel constructed as two fin wall surfaces and one fin base surface. As air flows through the channel, the plate is vibrated transversely to agitate the channel flow and thereby enhance heat transfer. The channel flow and the actuated plate are considered to be driven by a fan and a piezoelectric stack, respectively. A Coefficient of Performance (COP), ratio of total heat dissipated from the fin channel to total electric power to drive the fan and the agitator plate, is employed to evaluate overall heat transfer enhancement. A short plate, i.e. a plate is only placed at the entrance of the channel, has been shown to possess higher COP than a longer plate, i.e. a plate that is extended to be over most of the channel. For the short plate, COP is higher when it is actuated than when it is stationary. Detailed turbulence-kinetic-energy contours indicate that the higher COPs are due to turbulence generated along the plate edges and streamwise acceleration and deceleration of the bulk channel flow; both are induced by the vibration of the plate. Within regions where the plate is present, the generated turbulence and the acceleration and deceleration augment heat transfer. For a short plate, the turbulence and unsteadiness are transported downstream of the actuated plate to increase heat transfer in that region. However, such turbulence and unsteadiness are drawn out of the channel without full benefit of agitation and heat transfer enhancement when the plate is long, as the plate’s trailing edge is already close to the channel exit. This leads to a conclusion that the short plate is a better choice for active heat transfer enhancement.
Skip Nav Destination
ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels
July 8–12, 2012
Rio Grande, Puerto Rico, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-4478-6
PROCEEDINGS PAPER
Comparison of Heat Transfer Enhancement by Actuated Plates in Heat-Sink Channels Available to Purchase
Youmin Yu,
Youmin Yu
University of Minnesota, Minneapolis, MN
Search for other works by this author on:
Terrence Simon,
Terrence Simon
University of Minnesota, Minneapolis, MN
Search for other works by this author on:
Tianhong Cui
Tianhong Cui
University of Minnesota, Minneapolis, MN
Search for other works by this author on:
Youmin Yu
University of Minnesota, Minneapolis, MN
Terrence Simon
University of Minnesota, Minneapolis, MN
Mark North
Thermacore, Inc., Lancaster, PA
Tianhong Cui
University of Minnesota, Minneapolis, MN
Paper No:
HT2012-58280, pp. 667-674; 8 pages
Published Online:
July 24, 2013
Citation
Yu, Y, Simon, T, North, M, & Cui, T. "Comparison of Heat Transfer Enhancement by Actuated Plates in Heat-Sink Channels." Proceedings of the ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 2: Heat Transfer Enhancement for Practical Applications; Fire and Combustion; Multi-Phase Systems; Heat Transfer in Electronic Equipment; Low Temperature Heat Transfer; Computational Heat Transfer. Rio Grande, Puerto Rico, USA. July 8–12, 2012. pp. 667-674. ASME. https://doi.org/10.1115/HT2012-58280
Download citation file:
14
Views
Related Proceedings Papers
Related Articles
Experimental Investigation of the Heat Transfer Characteristics of Aluminum-Foam Heat Sinks With Restricted Flow Outlet
J. Heat Transfer (November,2007)
Erratum: “A Novel Approach to Low Profile Heat Sink Design” [ Journal of Heat Transfer, 2010, 132(9), p. 091401 ]
J. Heat Transfer (December,2010)
Liquid Single-Phase Flow in an Array of Micro-Pin-Fins—Part II: Pressure Drop Characteristics
J. Heat Transfer (December,2008)
Related Chapters
Introduction
Thermal Management of Microelectronic Equipment
Thermal Interface Resistance
Thermal Management of Microelectronic Equipment
Thermal Interface Resistance
Thermal Management of Microelectronic Equipment, Second Edition