This paper presents a model for analysis of heat and momentum transport in a novel spiraling radial inflow heat sink. The design provides uniform heat removal at high heat flux rates making this design attractive for electronics cooling applications or for heat removal from concentrating solar photovoltaic systems. The design consists of swirling flow in a microchannel between two concentric disk surfaces with flow accelerating inwards and then exiting at the center. The geometry of the flow path can further be varied to increase heat transfer and allow for greater surface temperature control. The governing flow and energy equations are solved using the integral method to achieve solutions for both the constant wall heat flux and constant wall temperature conditions. The model is used to explore the parametric effects of inlet flow and passage geometry, including constant and varying channel sizes. Case studies are examined for liquid water as the working fluid rejecting heat fluxes up to 100 W/cm2 while keeping surfaces below 80 °C.
- Heat Transfer Division
Prediction of Single Phase Heat and Momentum Transport in a Spiraling Radial Inflow Microchannel Heat Sink Available to Purchase
Ruiz, M, & Carey, VP. "Prediction of Single Phase Heat and Momentum Transport in a Spiraling Radial Inflow Microchannel Heat Sink." Proceedings of the ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1: Heat Transfer in Energy Systems; Theory and Fundamental Research; Aerospace Heat Transfer; Gas Turbine Heat Transfer; Transport Phenomena in Materials Processing and Manufacturing; Heat and Mass Transfer in Biotechnology; Environmental Heat Transfer; Visualization of Heat Transfer; Education and Future Directions in Heat Transfer. Rio Grande, Puerto Rico, USA. July 8–12, 2012. pp. 567-577. ASME. https://doi.org/10.1115/HT2012-58328
Download citation file: