The 3-step sulphur-iodine-based thermochemical cycle for splitting water is considered. The high-temperature step consists of the evaporation, decomposition, and reduction of H2SO4 to SO2 using concentrated solar process heat. This step is followed by the Bunsen reaction and HI decomposition. The solar reactor concepts proposed are based on a shell-and-tube heat exchanger filled with catalytic packed beds and on a porous ceramic foam to directly absorb solar radiation and act as reaction site. The design, modeling, and optimization of the solar reactor using complex porous structures relies on the accurate determination of their effective heat and mass transport properties. Accordingly, a multi-scale approach is applied. Ceramic foam samples are scanned using high-resolution X-ray tomography to obtain their exact 3D geometrical configuration, which in turn is used in direct pore-level simulations for the determination of the morphological and effective heat/mass transport properties. These are incorporated in a volume-averaged (continuum) model of the solar reactor. Model validation is accomplished by comparing numerically simulated and experimentally measured temperatures in a 1 kW reactor prototype tested in a solar furnace. The model is further applied to analyze the influence of foam properties, reactor geometry, and operational conditions on the reactor performance.

This content is only available via PDF.
You do not currently have access to this content.