Carbon nanotube is a promising material for thermal-management of micro devices because of its high intrinsic thermal conductivity. However, most bulk nanotubes show very low thermal conductivity due to the high thermal contact resistance. There are very few reliable experimental data for the contact issue of nanotubes. This paper uses three kinds of multi-walled carbon nanotubes; pristine, thermally-oxidized, and acidized nanotube. Each has unique nanoscale structure in their outermost surface. We measured thermal conductivity of their pellets and simultaneously conducted computational analysis treating random network model of spherocylinders. By comparing both results, thermal contact resistances between nanotubes are estimated and the effect of defected structure is discussed. The reliability of our method is also successfully confirmed compared with reported data using individual nanotubes.

This content is only available via PDF.
You do not currently have access to this content.