The present study is an experimental and numerical analysis on the natural convection of air in square enclosures with partially active side walls. The experimental equipment is based on two different systems: an holographic interferometer and a 2D-PIV. The test cell is a square enclosure filled of air with vertical partially active side walls at different temperatures. The hot and cold regions on these sides are located in the middle of the cavity. The remaining vertical walls are made up of glass to allow an optical access to the cavity. The top and bottom surfaces of the enclosure are made up of plexiglas to reduce heat leakages. The experimental study is carried out both through the holographic interferometry, in order to obtain the average Nusselt numbers at different Rayleigh numbers, and through the 2D-PIV, in order to analyse the dynamic behaviour of the phenomenon at the same Rayleigh numbers. The average Nusselt numbers are obtained measuring the temperature distribution in the air layer trough the real-time and double-exposure holographic interferometry; the dynamic structures are the velocity vector distribution, the streamlines and the velocity maps. Finally these experimental data are compared to the results obtained through a numerical study carried out using the finite volume code, Fluent 6.2.3. The aim of this comparison is the validation of the numerical procedure. In this way it is possible to use the numerical code to enlarge the Rayleigh number range.

This content is only available via PDF.
You do not currently have access to this content.