Nanosecond laser ablation is studied using a theoretical model combined with experimental data from laser ablation of metal films. The purpose of the research is to obtain the recoil pressure boundary condition resulting from explosive phase change. The ablation experiments are performed using a Nd:YAG laser of 1064 nm wavelength and 7 ns pulse width at full width half maximum. Three samples, 200 and 1000 nm aluminum films and 1000 nm nickel films, are used in the experiments. The transient shock wave positions are obtained by a time-resolved shadowgraph technique. A N2-laser pumped dye laser with 3 ns pulse width is used as an illumination source and is synchronized with the ablation laser to obtain the transient shock wave position with nanosecond resolution. The transient shock position is used in a model for finding the shock wave speed as well as the pressure, temperature, and velocity just behind the shock wave. A power law is used for fitting curves on the experimentally obtained shock wave position. Knowing the shock wave position, the normal shock equations are used to calculate the thermo-fluid properties behind the shock wave. The solutions are compared with the Taylor-Sedov solution for spherical shocks and the reason for the deviation is described. The thermo-fluid property results show similar trends for all tested samples. The results show that the Taylor-Sedov solution under-estimates the pressure behind the shock wave when compared to the normal shock results.

This content is only available via PDF.
You do not currently have access to this content.