Passive condenser systems are used in a number of industrial heat transfer systems. Passive containment cooling system (PCCS) which is composed of a number of vertical heat exchanger serves as an engineered safety system in an advanced boiling water reactor. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure. Experiments were designed to simulate the PCCS condensation with a tube bundle. Scaling analysis was performed to scale down the prototype PCCS with a tube bundle consisting of four tubes. The tubes in the bundle were of prototype height (1.8 m) and diameter (52.5 mm) and the operating conditions and boundary conditions such as the operating pressure, secondary cooling system were designed to represent prototype conditions. Steam condensation tests were carried out in complete condensation mode where all the steam entering the condenser bundle is completely condensed. Condensation heat transfer coefficients (HTC) were obtained for various steam flow rate. The condensation pressure depended on the inlet steam flow rate which happens to be the maximum condensation rate for the given test pressure. Data on condensation heat transfer were obtained for primary pressure raging from 110–270 kPa. The tube bundle condensation heat transfer rates were compared with single tube heat transfer rates from previous work. The results showed that the condensation heat transfer coefficient for the tube in bundle was comparable with single tube, however the secondary side heat transfer coefficients for the tubes in bundle was higher than for the single tube. Condensation heat transfer for tube in bundle ranged from 7500 W/ m2K to 20,000 W/ m2K for the range of pressure studied. A heat and mass analogy model was developed and the condensation heat transfer prediction from the model was compared with experimental data.

This content is only available via PDF.
You do not currently have access to this content.