Analytical and computational models are constructed for predicting the temperature distribution in a workpiece during gas metal arc braze-welding (GMABW). Specifically, the weld zone is modeled with Rosenthal’s analytical model, a finite difference model (FDM) and a finite volume computational model, constructed in the FLUENT® software package. Each model relates controllable braze-welding process parameters, such as traverse speed and applied voltage, to the temperature field that develops during the braze-welding process. Model-based predictions are validated by comparison with experimental data obtained from braze-welded specimens of C22000 commercial bronze alloy (CuZn90/10%wt). Temperature data are collected during the braze-welding process via thermocouples and infrared pyrometers aimed at the top surface of the specimen. Recommendations are made regarding the range of applicability and limitations of the models. In addition, opportunities are discussed for applying these models as part of an automated control framework for GMABW.

This content is only available via PDF.
You do not currently have access to this content.