Uniformity of temperature distribution in a loaded freezer cabinet is one of the most important factors affecting energy consumption of a refrigerator. Present study focuses on the airflow behavior and the temperature distribution inside the freezer compartment of a domestic no-frost refrigerator. Energy consumption increases in a freezer cabinet if the temperature difference between the warmest load package and average of all packages is high. The objective is to reduce the energy consumption by providing a uniform temperature distribution and also to keep the food fresh for a longer time. In this study, the air flow and heat transfer during on-time and off-time periods inside the freezer compartment is modeled by considering turbulent and laminar flow conditions in 3D transient CFD analyses. The initial and boundary conditions are provided from temperature controlled room and PIV measurements. The CFD analyses obtained are verified by experimental measurements.

This content is only available via PDF.
You do not currently have access to this content.