The steady and unsteady laminar flow and heat transfer characteristics for a pair of opposing confined impinging slot jets in 2D and 3D were evaluated numerically at two Reynolds numbers. The present study continues the authors’ earlier work [1] and identifies the main similarities and differences arising from the expansion to the third dimension. At lower Reynolds number jet (Re = 300), the flow interaction produces a symmetric, steady flow hydrodynamic pattern with the jets being deflected laterally for the 2D flow. At Re = 300, the 3D slot jet produces almost the same values as the 2D case, yet the flow is slightly asymmetrical and unsteady. However, by further increasing the Reynolds number to 750, a complex and highly unsteady flow develops for both 2D and 3D simulations. The symmetry of both the 2D and 3D flows is disrupted and the resulting complex flow patterns reveal the vortex pairing effects, leading to the jet “buckling and sweeping” motion, enabling the enhanced local heat transfer. The convective heat transfer coefficients and the unsteady flow development between the jets are thoroughly investigated, with the flow unsteadiness also characterized by analyzing the stagnation point displacement on the channel walls. The comparison between the 2D and 3D flow patterns indicate that the 3D opposite jets enhance the unsteady effects compared to the 2D unsteady opposite jets. The complex vortex patterns resulting from the unsteady jets interaction, as well as the velocity, vorticity and temperature fields for both 2D and 3D cases are thoroughly evaluated. The comparison between the 2D and 3D impinging air jets is documented and the impact on chip/microelectronics cooling is highlighted.

This content is only available via PDF.
You do not currently have access to this content.