The nominally one dimensional conduction of heat through a slab becomes two dimensional when one of the surfaces is rough or when the boundary conditions are spatially non-uniform. This paper develops the stochastic equations for a slab whose surface roughness or convective boundary condition is spatially correlated with correlation lengths ranging from 0 (white noise) to a length long in comparison to the slab thickness. The effect is described in terms of the standard deviation and the resulting spatial correlation of the heat flux as a function of depth into the slab. In contrast to the expectation that the effect is monotonic with respect to the correlation length, it is shown that the effect is maximized at an intermediate correlation length. It is also shown that roughness or a random convective heat transfer coefficient have essentially the same effects on the conducted heat, but that the combination results in a much deeper penetration than does each effect individually. In contrast to the usual methods of solving stochastic problems, both the case of a rough edge and a smooth edge with stochastic convective heat transfer coefficients can only be treated using direct Monte Carlo simulations.
Skip Nav Destination
ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
July 19–23, 2009
San Francisco, California, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-4357-4
PROCEEDINGS PAPER
The Effect of Spatially Correlated Roughness and Boundary Conditions on the Conduction of Heat Through a Slab
A. F. Emery,
A. F. Emery
University of Washington, Seattle, WA
Search for other works by this author on:
H. Dillon,
H. Dillon
University of Washington, Seattle, WA
Search for other works by this author on:
A. M. Mescher
A. M. Mescher
University of Washington, Seattle, WA
Search for other works by this author on:
A. F. Emery
University of Washington, Seattle, WA
H. Dillon
University of Washington, Seattle, WA
A. M. Mescher
University of Washington, Seattle, WA
Paper No:
HT2009-88274, pp. 203-216; 14 pages
Published Online:
March 12, 2010
Citation
Emery, AF, Dillon, H, & Mescher, AM. "The Effect of Spatially Correlated Roughness and Boundary Conditions on the Conduction of Heat Through a Slab." Proceedings of the ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. Volume 2: Theory and Fundamental Research; Aerospace Heat Transfer; Gas Turbine Heat Transfer; Computational Heat Transfer. San Francisco, California, USA. July 19–23, 2009. pp. 203-216. ASME. https://doi.org/10.1115/HT2009-88274
Download citation file:
4
Views
Related Proceedings Papers
Related Articles
The Effect of Spatially Correlated Roughness and Boundary Conditions on the Conduction of Heat Through a Slab
J. Heat Transfer (May,2010)
Constructal Placement of High-Conductivity Inserts in a Slab: Optimal Design of “Roughness”
J. Heat Transfer (December,2001)
Approximation of Transient 1D Conduction in a Finite Domain Using Parametric Fractional Derivatives
J. Heat Transfer (July,2011)
Related Chapters
Thermal Interface Resistance
Thermal Management of Microelectronic Equipment
Modeling of SAMG Operator Actions in Level 2 PSA (PSAM-0164)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Stimulating Creative Design Alternatives Using Customer Values
Decision Making in Engineering Design