Space and power constraints in many contemporary electronic systems place a greater importance than ever on efficient thermal management solutions. This paper investigates the performance and optimisation of air cooled heat sinks suitable for deployment in compact electronic devices. The heat sinks examined have circular footprint, with air flowing from the centre, radially outwards through radially aligned channels. Heat sink height is examined through experiments which were performed on heat sinks with high and low fins, with two and three dimensional flow and heat transfer phenomena respectively. In both cases the effect of angular fin spacing is investigated to determine optimum fin spacing for a range of heat sink pressure drops. Heat transfer correlations from literature which were originally developed for parallel finned heat sinks are compared with the experimental data. The main findings of the paper are that the performance of the high profile two dimensional heat sink is more sensitive to fin angular displacement than low profile three dimensional heat sinks. The parallel fin correlations from literature were found to predict the performance of the three dimensional heat sinks more accurately than the two dimensional heat sinks.

This content is only available via PDF.
You do not currently have access to this content.