The laser flash method for measuring thermal diffusivity is well established and has been in use for many years. Early analysis methods employed a simple model, in which one dimensional transient conduction was assumed, with insulated surfaces during the time subsequent to the flash. More recently, models of grater sophistication have been applied to flash diffusivity experiments. These models have been matched to experimental data using nonlinear regression and assume one-dimensional conduction. The advanced models have achieved highly accurate agreement with experimental data taken from thin samples, on the order of one millimeter in thickness. As samples become thicker, models which neglect edge losses can lose some conformity to the experimental data. The present research involves the application of a two dimensional model which allows for penetration of the laser flash into the sample. The accommodation of the flash penetration is important for porous materials, where the coarseness of the porosity is more than one percent of the sample thickness. Variability of the area of incidence of the flash is also investigated to determine the effect on the model and the results. Statistical methods are used in order to make a determination as to the validity of the two dimensional model, as compared with the one dimensional analysis method.

This content is only available via PDF.
You do not currently have access to this content.