Passive two-phase immersion cooling with dielectric liquids is a well established method of cooling thyristor type power semiconductors. However, the capabilities of this method for cooling high heat flux power semiconductor devices such as insulated gate bipolar transistors (IGBTs) have not been thoroughly explored. This work quantifies the junction-to-fluid thermal resistance of IGBTs soldered to boilers and immersed in the segregated hydrofluoroether liquid C3F7OCH3, one of a class of new dielectric liquids with a low Global Warming Potential. The boilers were square copper heat spreaders with a microporous metallic boiling enhancement coating applied to the wetted surfaces. Bare 0.54cm2 IGBT die were soldered to experimentally-optimized boilers and immersed in saturated C3F7OCH3 liquid at atmospheric pressure. Boiler temperature measurements showed a peak boiler-to-fluid heat transfer coefficient of ∼14W/cm2-K at a die level heat flux of 255 W/cm2. Direct junction temperature measurements yielded junction-to-fluid resistivities of 0.15°C/(W/cm2) at this heat flux and 0.20°C/(W/cm2) at 400 W/cm2, the maximum heat flux studied. These results, coupled with published data for air cooled condensers, show that passive two-phase cooling of power modules may provide junction-to-ambient thermal resistances approximately 25% those of conventional air cooled modules and junction-to-fluid resistances 30%–50% of conventional liquid cooled modules, and similar to emerging direct substrate liquid cooling schemes.
Skip Nav Destination
ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
August 10–14, 2008
Jacksonville, Florida, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-4848-7
PROCEEDINGS PAPER
Immersion Cooling of Power Electronics in Segregated Hydrofluoroether Liquids Available to Purchase
Phil E. Tuma
Phil E. Tuma
3M Company, St. Paul, MN
Search for other works by this author on:
Cindy M. Barnes
3M Company, St. Paul, MN
Phil E. Tuma
3M Company, St. Paul, MN
Paper No:
HT2008-56230, pp. 719-725; 7 pages
Published Online:
July 7, 2009
Citation
Barnes, CM, & Tuma, PE. "Immersion Cooling of Power Electronics in Segregated Hydrofluoroether Liquids." Proceedings of the ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. Heat Transfer: Volume 2. Jacksonville, Florida, USA. August 10–14, 2008. pp. 719-725. ASME. https://doi.org/10.1115/HT2008-56230
Download citation file:
107
Views
Related Proceedings Papers
Related Articles
A Wire-Bondless Packaging Platform for Silicon Carbide Power Semiconductor Devices
J. Electron. Packag (September,2018)
Heat Pipes for Cooling High Flux/High Power Semiconductor Chips
J. Electron. Packag (March,1993)
Optimized Design and Simulation Study of Liquid-Cooled Heat Sink Model for IGBT Module Based on TPMS Structure
J. Thermal Sci. Eng. Appl (May,2025)
Related Chapters
Tales of the JEDEC Knight
More Hot Air
Telecom: A Field with Myths and Mistakes All Its Own
More Hot Air
Characteristics, Components, and Performance of A/C System Exchangers
Heat Exchanger Engineering Techniques