Electrohydrodynamic (EHD) conduction phenomenon involves the interaction of electric field and flow field in a dielectric fluid medium via the process of dissociation and recombination of free charges. This paper numerically studies the effect of electric conduction phenomenon on the mixing mechanism of two fluids with identical physical properties but separated due to the non-homogeneity of the temperature field. The fluid is designated to be restored in a spherical reservoir and it is not spontaneously mixed since the reservoir is predicted to be located in non-gravity environment. The electrodes are embedded on the reservoir surface such that the resultant electric body force causes the fluid with higher temperature mixes with the colder fluid and vice versa. The electric field and electric body force distribution and the resultant velocity field are presented. The results are illustrated in the form of time evolution of temperature distribution inside the reservoir. The effects of primary dimensionless numbers on the mixing time are studied.

This content is only available via PDF.
You do not currently have access to this content.