Petroleum coke is processed into calcined coke in a rotary kiln, where the temperature profiles of flue gas and coke bed are highly nonuniform due to different flow and combustion mechanisms. Motivated by saving energy costs, the effect of refractory brick’s thermal properties on potential energy savings is investigated. This study focuses on investigating potential energy savings by replacing inner one third of existing bricks with higher thermal capacity (Cp) and/or higher thermal conductivity (k) bricks. This investigation is motivated by postulating that the bricks with higher thermal capacity can store more thermal energy during the period of contacting with the hot gas and release more heat to the cock bed when the bricks rotate to below and in contact with the coke bed. A rotational, transient marching conduction numerical simulation is conducted using the commercial software FLUENT. The impact of brick heat capacity and thermal conductivity on transporting thermal energy to the coke bed is analyzed. The results show: (a) Increasing the heat capacity of brick layer reduces brick temperature which helps increase the heat transfer between the hot gas and brick, in other words it does help brick store more heat from the hot gas, but, heat transfer between brick and coke is reduced, which is opposite to the original postulation. (b) Higher brick thermal conductivity decreases brick temperature thus increases heat transfer between hot gas and the brick layer. The heat transfer from brick to coke bed is also increased, but not significantly. (c) Usually a brick with a higher Cp value also has a higher k-value. Simulation of a brick layer with both four times higher Cp and k values actually show appreciable heat is transported from the brick to the coke bed for one rotation for both lower and higher Cp and k bricks. The difference is not significant.
Skip Nav Destination
ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
August 10–14, 2008
Jacksonville, Florida, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-4847-0
PROCEEDINGS PAPER
Investigation of Potential Benefits of Using Bricks of High Thermal Capacity and Conductivity in a Rotating Calcining Kiln
Lei Zhao
University of New Orleans, New Orleans, LA
Ting Wang
University of New Orleans, New Orleans, LA
Paper No:
HT2008-56455, pp. 729-740; 12 pages
Published Online:
July 7, 2009
Citation
Zhao, L, & Wang, T. "Investigation of Potential Benefits of Using Bricks of High Thermal Capacity and Conductivity in a Rotating Calcining Kiln." Proceedings of the ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. Heat Transfer: Volume 1. Jacksonville, Florida, USA. August 10–14, 2008. pp. 729-740. ASME. https://doi.org/10.1115/HT2008-56455
Download citation file:
5
Views
Related Proceedings Papers
Related Articles
Simulation of Combustion and Thermal-Flow Inside a Petroleum Coke Rotary Calcining Kiln—Part I: Process Review and Modeling
J. Thermal Sci. Eng. Appl (June,2010)
Simulation of Combustion and Thermal-Flow Inside a Petroleum Coke Rotary Calcining Kiln—Part II: Analysis of Effects of Tertiary Airflow and Rotation
J. Thermal Sci. Eng. Appl (June,2010)
Investigation of Potential Benefits of Using Bricks of High Thermal Capacity and Conductivity in a Rotating Calcining Kiln
J. Thermal Sci. Eng. Appl (March,2009)
Related Chapters
Radiation
Thermal Management of Microelectronic Equipment
Radiation
Thermal Management of Microelectronic Equipment, Second Edition
Experimental Investigation of an Improved Thermal Response Test Equipment for Ground Source Heat Pump Systems
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)