In Direct Chill (DC) non-ferrous metal casting, water is used as a cooling medium to extract the heat from the solidified outer layer of the ingot which supports the inner molten metal. Insufficient or excessive water supply changes the heat flux which is favorable for the growth of micro-cracks. This work presents the combined experimental and numerical technique to estimate the heat flux in the DC nickel casting. Experimental techniques are explained for the measurement of temperature. A two-dimensional Inverse Heat Conduction Problem (IHCP) is solved through the non-iterative Finite Element Method (FEM) using the experimental temperature data. Wetting front which separates the film boiling and nucleate boiling zone, changes the order of the heat flux. Maximum heat flux position and its propagation velocity are plotted as a function of time. It is demonstrated that increase in water velocity decreases the maximum heat flux and delays the wetting front movement.

This content is only available via PDF.
You do not currently have access to this content.