The dynamics of a single gas bubble, emanating from a submerged orifice in stagnant water has been explored both theoretically and experimentally. The mathematical model represents a fundamental balance of forces due to buoyancy, viscosity, surface tension, liquid inertia, and gas momentum transport, and the consequent motion of the gas-liquid interface. Theoretical solutions describe the dynamic bubble behavior (incipience, growth and necking) as it grows from a tip of a sub-millimeter-scale capillary orifice in an isothermal pool of water. These results are also found to be in excellent agreement with a set of experimental data that are obtained from optical high-speed micro-scale flow visualization. Variations in bubble shape, equivalent diameter, and growth times with capillary orifice diameter and air flow rates are outlined. These parametric trends suggest a two-regime ebullient transport: (a) a constant volume regime where the bubble diameter is not affected by the flow rate, and (b) a growing bubble regime where bubble size increases with flow rate.

This content is only available via PDF.
You do not currently have access to this content.